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On the Spectrum of an Hamiltonian in Fock Space.
Discrete Spectrum Asymptotics
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A model operator H associated with the energy operator of a system describing three
particles in interaction, without conservation of the number of particles, is considered.
The location of the essential spectrum of H is described. The existence of infinitely
many eigenvalues (resp. the finiteness of eigenvalues) below the bottom τess(H ) of the
essential spectrum of H is proved for the case where the associated Friedrichs model
has a threshold energy resonance (resp. a threshold eigenvalue). For the number N (z)
of eigenvalues of H lying below z < τess(H ) the following asymptotics is found

lim
z→τess(H )−0

N (z)

| log |z − τess(H )|| = U0 (0 < U0 < ∞).
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1. INTRODUCTION

The main goal of the present paper is to give a thorough mathematical treatment of
the spectral properties for a model operator H with emphasis on the asymptotics
for the number of infinitely many eigenvalues (Efimov’s effect case). The model
operator H is associated with a system describing three particles in interaction,
without conservation of the number of particles.
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The Efimov effect is one of the more remarkable results in the spectral anal-
ysis for continuous three-particle Schrödinger operators: if none of the three two-
particle Schrödinger operators (corresponding to the two-particle subsystems) has
negative eigenvalues, but at least two of them have a zero energy resonance, then
this three-particle Schrödinger operator has an infinite number of discrete eigen-
values, accumulating at zero.

Since its discovery by Efimov in 1970(13) many works have been devoted to
this subject. See, for example Refs. 2, 8, 10, 15, 32, 37–39, 41.

The main result obtained by Sobolev(37) (see also Ref. 39). is an asymptotics
of the form U0| log |λ|| for the number of eigenvalues on the left of λ, λ < 0,
where the coefficient U0 does not depend on the two-particle potentials vα and is a
positive function of the ratios m1/m2, m2/m3 of the masses of the three-particles.

Recently the existence of the Efimov effect for N -body quantum systems
with N ≥ 4 has been proved by X.P. Wang in Ref. 40.

In fact in Ref. 40 a lower bound on the number of eigenvalues of the total
(reduced) Hamiltonian of the form

C0| log(E0 − λ)|
is given, when λ tends to E0, where C0 is a positive constant and E0 is the bottom
of the essential spectrum.

The kinematics of the quantum systems describing three quasi-particles on
lattices has peculiar features. For instance, due to the fact that the discrete ana-
logue of the Laplacian (or its generalizations) is not rotationally invariant, the
Hamiltonian of a system does not separate into two parts, one relating to the
center-of-mass motion and the other one to the internal degrees of freedom. In
particular, the Efimov effect exists only for the zero value of the three-particle
quasi-momentum K ∈ T

3 = (−π, π ]3 (see, e.g., Refs. 3, 5, 7, 20, 23, 24, 28) for
relevant discussions and Refs. 11, 12, 19, 28, 29, 31, 34, 42, 44 for the general
study of the low-lying excitation spectrum for quantum systems on lattices).

In statistical physics, (27,30) solid-state physics (31) and the theory of quantum
fields (18) some important problems arise where the number of quasi-particles is
bounded, but not fixed. In Ref. 36 geometric and commutator techniques have
been developed in order to find the location of the spectrum and to prove absence
of singular continuous spectrum for Hamiltonians without conservation of the
particle number.

The study of systems describing n particles in interaction, without conser-
vation of the number of particles is reduced to the investigation of the spectral
properties of self-adjoint operators acting in the cut subspace H(n) of the Fock
space, consisting of r ≤ n particles. (18,30,31,36,43)

The perturbation problem of an operator (the Friedrichs model), with point
and continuous spectrum (which acts in H(2)) has played a considerable role in
the study of spectral problems connected with the quantum theory of fields. (18)
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In the present paper we consider the perturbation problem with a particu-
lar attention to the two- and three-particle essential and point spectrum. Under
some smoothness assumptions on the parameters of a family of Friedrichs mod-
els h(p), p ∈ T

3, we obtain the following results:

(i) We describe the location of the essential spectrum of H via the spectrum
of h(p), p ∈ T

3.

(ii) We prove that the operator H has infinitely many eigenvalues below
the bottom of the essential spectrum σess(H ), if the operator h(0) has a
threshold energy resonance. Moreover, we establish the following asymp-
totic formula for the number N (z) of eigenvalues of H lying below
z < m = inf σess(H )

lim
z→m−0

N (z)

| log |z − m|| = U0 (0 < U0 < ∞).

(iii) We prove the finiteness of eigenvalues of H below the bottom of σess(H ),
if h(0) has a threshold eigenvalue.

We remark that the presence of a zero energy resonance for the Schrödinger
operators is due to the two-particle interaction operators V , in particular, the cou-
pling constant (if V has in front of it a coupling constant) (see, e.g., Refs. 1, 22,
23, 41)

It is remarkable that for the Friedrichs model h(0) the presence of a threshold
energy resonance (consequently the existence of infinitely many eigenvalues of
H ) is due to the annihilation and creation operators acting in the symmetric Fock
space.

We pointout that the assertion (iii) is surprising and similar assertions have
not yet been proved for the three-particle Schrödinger operators on Z

3.
We remark that the operator H has been considered before, but only the ex-

istence of infinitely many eigenvalues below the bottom of the essential spectrum
of H has been announced in Ref. 25 and only the location of the essential spec-
trum of H has been described in terms of zeroes of the Friedholm determinant in
Ref. 26, in the case where the functions u, v and w are analytic.

The organization of the present paper is as follows. Section 1 is an introduc-
tion to the whole work. In Sec. 2 the model operator is described as a bounded
self-adjoint operator H in H(3) and the main results of the present paper are for-
mulated. Some spectral properties of h(p), p ∈ T

3, are studied in Sec. 3. In Sec. 4
the location and structure of the essential spectrum of H is studied. In Sec. 5 we
prove the Birman-Schwinger principle for the operator H. In Sec. 6 the finiteness
of the number of eigenvalues of the operator H is established. In Sec. 7 an asymp-
totic formula for the number of eigenvalues is proved. Some technical material is
collected in Appendix A.
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Throughout the present paper we adopt the following conventions: Denote by
T

3 the three-dimensional torus, the cube (−π, π ]3 with appropriately identified
sides. The torus T

3 will always be considered as an abelian group with respect
to the addition and multiplication by real numbers regarded as operations on the
three-dimensional space R

3 modulo (2πZ)3.
For each δ > 0 the notation Uδ(0) = {p ∈ T

3 : |p| < δ} stands for a δ-
neighborhood of the origin.

For any n = 1, 2, . . . let B(θ, (T3)n) with 1/2 < θ ≤ 1, be the Banach spaces
of Hölder continuous functions on (T3)n with exponent θ obtained by the clo-
sure of the space of smooth (periodic) functions f on (T3)n with respect to the
norm

‖ f ‖θ = sup
t,�∈(T3)n

��=0

[| f (t)| + |�|−θ | f (t + �) − f (t)|].

The set of functions f : T
3 → R having continuous partial derivatives up to

order n inclusive will be denoted C (n)(T3). In particular C (0)(T3) = C(T3) by our
convention that f (0)(x) = f (x).

2. THE MODEL OPERATOR AND STATEMENT OF RESULTS

Let us introduce some notations used in this work. Let C = C
1 be the field

of complex numbers and let L2(T3) be the Hilbert space of square-integrable
(complex) functions defined on T

3 and Ls
2((T3)2) be the Hilbert space of square-

integrable symmetric (complex) functions on (T3)2.

Denote by H(3) the direct sum of spaces H0 = C
1, H1 = L2(T3) and H2 =

Ls
2((T3)2), that is, H(3) = H0 ⊕ H1 ⊕ H2.

Let H be the operator in H(3) with the entries Hi j : H j → Hi , i, j =
0, 1, 2, :

(H00 f0)0 = u0 f0, (H01 f1)0 =
∫

T
3

v(q ′) f1(q ′)dq ′, H02 = 0,

H10 = H∗
01, (H11 f1)1(p) = u(p) f1(p), (H12 f2)1(p) =

∫

T
3

v(q ′) f2(p, q ′)dq ′,

H20 = 0, H21 = H∗
12, (H22 f2)2(p, q) = w(p, q) f2(p, q),

where H∗
i j : Hi → H j , ( j = i + 1, i = 0, 1) denotes the adjoint operator to Hi j

and fi ∈ Hi , i = 0, 1, 2.

Here u0 is a real number, u is a real-valued essentially bounded function
on T

3, v is a real-valued function belonging to L2(T3) and w is a real-valued
essentially bounded symmetric function on (T3)2.
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Under these assumptions the operator H is bounded and self-adjoint in H(3).
We remark that the operators H10 and H21 resp. H01 and H12 defined in the

Fock space are called creation resp. annihilation operators.
Throughout this paper we assume the following additional assumptions.

Assumption 2.1. (i) The symmetric function w on (T3)2 is even with respect to
(p, q), and has a unique non-degenerate minimum at the point (0, 0) ∈ (T3)2 and
all third order partial derivatives of w belong to B(θ, (T3)2).
(ii) There exist positive definite matrix W and real numbers l1, l2(l1 > 0, l2 �= 0)
such that (

∂2w(0, 0)

∂pi∂p j

)3

i, j=1

= l1W,

(
∂2w(0, 0)

∂pi∂q j

)3

i, j=1

= l2W.

Remark 2.2. It is easy to check that Assumption 2.1 implies the inequality
l1 >| l2 | .

Assumption 2.3. The function u ∈ C (2)(T3) is even on T
3 and u has a unique

non-degenerate minimum at the point 0 ∈ T
3. The function v ∈ C (2)(T3) is either

even or odd on T
3.

Remark 2.4. If the function v is equivalent to zero then the operator H will be
direct sum of the operators Hii , i = 0, 1, 2, and hence in this case the spectrum
of H is only the union of the spectra of H00, H11 and H22. Therefore throughout
the present paper we assume that v �= 0.

Remark 2.5. The function w resp. u is even and has a unique non-degenerate
minimum on T

3 and hence without loss of generality we assume that the function
w resp. u has a unique minimum at the point (0, 0) ∈ (T3)2 resp. 0 ∈ T

3.

Set

m = min
p,q∈T

3
w(p, q), M = max

p,q∈T
3
w(p, q)

and


(p, z) =
∫

T
3

v2(t)dt

w(p, t) − z
, p ∈ T

3, z ∈ C \ [m(p), M(p)],

where the numbers m(p) and M(p) are defined by

m(p) = min
q∈T

3
w(p, q) and M(p) = max

q∈T
3
w(p, q).
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For any p ∈ T
3 the function 
(p, ·) is increasing in (−∞, m(p)) and hence there

exists a finite or infinite positive limit

lim
z→m(p)−0


(p, z) = 
(p, m(p)).

For any p ∈ Uδ(0), δ > 0-sufficiently small, the function wp(·) = w(p, ·)
has a unique non-degenerate minimum on T

3 and by Lebesgue’s dominated con-
vergence theorem the following equality holds


(p, m(p)) =
∫

T
3

v2(t)dt

wp(t) − m(p)
, p ∈ Uδ(0).

Assumption 2.6. (i) The function 
(·, m(·)) has a unique maximum at p = 0 ∈
T

3. (ii) There exist positive numbers δ and c such that for all nonzero p ∈ Uδ(0)
the following inequality holds


(0, m) − 
(p, m) > cp2.

We recall (see, e.g., Refs. 4, 35) that a complex-valued bounded function
ε : T

d → C, d ≥ 1, is called conditionally negative definite if ε(p) = ε(−p) and
n∑

i, j=1

ε(pi − p j )zi z̄ j ≤ 0

for any n ∈ N, for all p1, p2, . . . , pn ∈ T
d and all z = (z1, z2, . . . , zn) ∈ C

n sat-
isfying

∑n
i=1 zi = 0.

Remark 2.7. Let ε be a real-analytic conditionally negative definite function
on T

3 with a unique non-degenerate minimum at the origin and such that all
third order partial derivatives of ε belong to B(θ, T

3). The function v ∈ C (2)(T3)
(entering H01, H12) is either even or odd on T

3 and the functions u (entering H11)
and w (entering H22) satisfy

u(p) = ε(p) + c, w(p, q) = ε(p) + ε(p + q) + ε(q) (2.1)

for some real c. Then v, u and w satisfy Assumptions 2.1, 2.3 and 2.6 (see
Lemma A.1).

To formulate the main results of the paper we introduce a family of Friedrichs
model h(p), p ∈ T

3, which acts in H(2) ≡ H0 ⊕ H1 with the entries

(h00(p) f0)0 = u(p) f0, h01 = 1√
2

H01, (2.2)

h10 = h∗
01, (h11(p) f1)1(q) = wp(q) f1(q),

where wp(q) = w(p, q).
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Let the operator h0(p), p ∈ T
3, acts in H(2) as

h0(p)

(
f0

f1(q)

)
=

(
0

wp(q) f1(q)

)
.

The perturbation h(p) − h0(p) of the operator h0(p) is a self-adjoint operator
of rank 2. Therefore in accordance with the invariance of the essential spectrum
under finite rank perturbations the essential spectrum σess(h(p)) of h(p) fills the
following interval on the real axis:

σess(h(p)) = [m(p), M(p)].

Remark 2.8. We remark that for some p ∈ T
3 the essential spectrum of h(p)

may degenerate to the set consisting of the unique point [m(p), m(p)] and hence
we can not state that the essential spectrum of h(p) is absolutely continuous for
any p ∈ T

3. For example, this is the case if the function w is of the form 2.1,
where p = (π, π, π ) ∈ T

3 and

ε(q) = 3 − cos q1 − cos q2 − cos q3, q = (q1, q2, q3) ∈ T
3

The following theorem describes the essential spectrum of the operator H.

Theorem 2.9. For the essential spectrum σess(H ) of the operator H the equality

σess(H ) = ∪p∈T
3σd (h(p)) ∪ [m, M]

holds, where σd (h(p)) is the discrete spectrum of the operator h(p), p ∈ T
3.

For any p ∈ T
3 we define an analytic function �(p, z) (the Fredholm deter-

minant associated with the operator h(p)) in C \ [m(p), M(p)] by

�(p, z) = u(p) − z − 1

2

(p, z). (2.3)

Let σ be the set of all complex numbers z ∈ C \ [m(p), M(p)] such that the
equality �(p, z) = 0 holds for some p ∈ T

3.

Remark 2.10. We remark that in Ref. 26 the essential spectrum of the operator
H has been described by means of zeroes of the Fredholm determinant defined in
(2.3) and by the spectrum σ (H22) of the multiplication operator H22 as follows:

σess(H ) = σ ∪ σ (H22) ≡ σ ∪ [m, M].

We point out that the equality

σ = ∪p∈T
3σd (h(p))

holds (see Lemma 4.2).
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Definition 2.11. The set σ resp. σ (H22) ≡ [m, M] is called two- resp. three-
particle branch of the essential spectrum σess(H ) of the operator H, which will
be denoted by σtwo(H ) resp. σthree(H ).

Since 
(0, ·) is continuous in z ≤ m the following finite limit exists

�(0, m) = lim
z→m−0

�(0, z).

Definition 2.12. Let part (i) of Assumption 2.1 be fulfilled, v ∈ B(θ, T
3) and

u(0) �= m. The compact operator h(0) on C(T3) is said to have a threshold energy
resonance if the number 1 is an eigenvalue of the operator

(Gψ)(q) = v(q)

2(u(0) − m)

∫

T
3

v(t)ψ(t)dt

w0(t) − m
, ψ ∈ C(T3)

and the associated eigenfunction ψ (up to a constant factor) satisfies the condition
ψ(0) �= 0.

Remark 2.13. Let part (i) of Assumption 2.1 be fulfilled and v ∈ B(θ, T
3),

1/2 < θ ≤ 1. (i) If u(0) ≤ m, then the equation h(0) f = m f has only the triv-
ial solution f ∈ C

1 ⊕ L1(T3), where L1(T3) is the Banach space of integrable
functions. (ii) Assume that u(0) > m and �(0, m) = 0. a) If v(0) �= 0, then the op-
erator h(0) has a threshold energy resonance and the vector f = ( f0, f1), where

f0 = const �= 0, f1(q) = − v(q) f0√
2(w0(q) − m)

∈ L1(T3) \ L2(T3), (2.4)

obeys the equation h(0) f = m f (see Lemma 3.2). b) If v(0) = 0, then the oper-
ator h(0) has a threshold eigenvalue and the vector f = ( f0, f1), where f0 ∈ C

1

and f1 ∈ L2(T3) are defined by (2.4), obeys the equation h(0) f = m f (see
Lemma 3.3).

Let us denote by τess(H ) the bottom of the essential spectrum σess(H )
(τess(H ) ≡ inf σess(H )) of the operator H and by N (z) the number of eigenval-
ues of H lying below z ≤ τess(H ).

The main result of this paper is the following

Theorem 2.14. Let Assumptions 2.1 and 2.3 be fulfilled. (i) Assume that the
operator h(0) has a threshold eigenvalue at the bottom z = τess(H ) and Assump-
tion 2.6 is fulfilled. Then the operator H has a finite number of eigenvalues lying
below τess(H ). (ii) Assume that the operator h(0) has a threshold energy reso-
nance and part (i) of Assumption 2.6 is fulfilled. Then the operator H has in-
finitely many eigenvalues lying below τess(H ) = m and accumulating at τess(H ).
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Moreover the function N (·) obeys the relation

lim
z→m−0

N (z)

| log |z − m|| = U0 (0 < U0 < ∞). (2.5)

Remark 2.15. The constant U0 does not depend on the function v and is given
as a positive function depending only on the ratio l1

l2
(with l1, l2 as in Assump-

tion 2.1).

Remark 2.16. We remark that if the conditions of Theorem 2.14 are fulfilled,
then τess(H ) = m (see Lemma A.3).

Remark 2.17. We remark that in Ref. 5 a result which is an analogue of part (ii)
of Theorem 2.14, has been proven for the three-particle Schrödinger operators
associated with a system of three-particles on lattices interacting via zero-range
pair potentials.

Remark 2.18. Clearly, the infinite cardinality of the discrete spectrum of H
lying on the l.h.s. of m follows automatically from the positivity of U0.

3. SPECTRAL PROPERTIES OF THE OPERATORS h( p), p ∈ T
3

In this section we study some spectral properties of the family of Friedrichs
models h(p), p ∈ T

3, given by (2.2), which plays a crucial role in the study of
the spectral properties of H . We notice that the spectrum and resonances of the
Friedrichs model have been studied in detail in Refs. 6, 14, 17, 21.

In particular, the following statement has been proven there.

Lemma 3.1. For any p ∈ T
3 the operator h(p) has an eigenvalue z ∈ C \

[m(p), M(p)] if and only if �(p, z) = 0.

The following two lemmas establish in which cases the bottom of the essen-
tial spectrum is a threshold energy resonance or eigenvalue.

Lemma 3.2. Let part (i) of Assumption 2.1 be fulfilled and v ∈ B(θ, T
3). The

operator h(0) has a threshold energy resonance if and only if �(0, m) = 0 and
v(0) �= 0.
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Proof. “Only If Part.” Suppose that the operator h(0) has a threshold energy res-
onance. Then by Definition 2.12 the inequality u(0) �= m holds and the equation

ψ(q) = v(q)

2(u(0) − m)

∫

T
3

v(t)ψ(t)dt

w0(t) − m
, ψ ∈ C(T3) (3.1)

has a nontrivial solution ψ ∈ C(T3) which satisfies the condition ψ(0) �= 0.

This solution is equal to the function v (up to a constant factor) and hence

�(0, m) = u(0) − m − 1

2

∫

T
3

v2(t)dt

w0(t) − m
= 0.

“If Part.” Let the equality �(0, m) = 0 hold and let v(0) �= 0. Then the inequality
u(0) �= m holds and the function v ∈ C(T3) is a solution of the Eq. 3.1, that is, by
Definition 2.12 the operator h(0) has a threshold energy resonance. �

Lemma 3.3. Let part (i) of Assumption 2.1 be fulfilled and assume v ∈ B(θ, T
3),

1/2 < θ ≤ 1. The operator h(0) has a threshold eigenvalue if and only if
�(0, m) = 0 and v(0) = 0.

Proof. “Only If Part.” Suppose f = ( f0, f1) is an eigenvector of the operator
h(0) associated with the eigenvalue z = m. Then f0 and f1 satisfy the following
system of equations⎧⎨

⎩
(u(0) − m) f0 + 1√

2

∫
T

3

v(q ′) f1(q ′) dq ′ = 0

1√
2
v(q) f0 + (w0(q) − m) f1(q) = 0.

(3.2)

From (3.2) we find that f0 and f1 are given by (2.4) and from the first equation of
(3.2) we derive the equality �(0, m) = 0.

Since w0(·) ∈ C (3)(T3) and v(·) ∈ B(θ, T
3) and the function w0(·) has a

unique non-degenerate minimum at the origin we conclude that f1 ∈ L2(T3) iff
v(0) = 0.

“If Part.” Let v(0) = 0 and �(0, m) = 0. Then the vector f = ( f0, f1),
where f0 and f1 are defined by (2.4), obeys the equation h(0) f = m f and
f1 ∈ L2(T3). �

Lemma 3.4. Let part (i) of Assumption 2.1 and Assumptions 2.3, 2.6 be fulfilled.
Let the operator h(0) have a threshold eigenvalue. Then there exist numbers δ > 0
and c > 0 such that

|�(p, m)| ≥ cp2 for any p ∈ Uδ(0),

|�(p, m)| ≥ c for all p ∈ T
3 \ Uδ(0).
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Proof. By Lemma 3.3 we have �(0, m) = 0 and v(0) = 0. Then the function
�(·, m) can be represented in the form

�(p, m) = u(p) − u(0) + 1

2
(
(0, m) − 
(p, m)).

Using Assumptions 2.3 and 2.6 we complete then the proof of the lemma. �

Since the function w(·, ·) has a unique non-degenerate minimum at the point
(0, 0) ∈ (T3)2 the following integral is finite∫

T
3

v2(t) dt

wp(t) − m
.

Lebesgue’s dominated convergence theorem yields the equality

�(0, m) = lim
p→0

�(p, m)

and hence the function �(·, m) is continuous on T
3.

Set

C+ = {z ∈ C : Rez > 0}, R+ = {x ∈ R : x > 0}, R
0
+ = R+ ∪ {0}.

Let w0(·, ·) be the function defined on Uδ(0) × T
3, δ > 0 sufficiently small,

as

w0(p, q) = wp(q + q0(p)) − m(p),

where q0(·) ∈ C (3)(Uδ(0)) and for any p ∈ Uδ(0) the point q0(p) is the non-
degenerate minimum of the function wp(·) (see Lemma A.2). Here C (n)(Uδ(0))
can be defined similarly to C (n)(T3).

For any p ∈ Uδ(0) we define an analytic function D(p, ζ ) in C+ by

D(p, ζ ) = u(p) − m(p) + ζ 2 − 1

2

∫

T
3

v2(q + q0(p)) dq

w0(p, q) + ζ 2
.

The following decomposition plays an important role in the proof of the main
result, that is, the asymptotics (2.5).

Lemma 3.5. Let Assumptions 2.1 and 2.3 be fulfilled. Then there exists a num-
ber δ > 0 such that

i) For any ζ ∈ C+ the function D(·, ζ ) is of class C (2)(Uδ(0)) and the fol-
lowing decomposition

D(p, ζ ) = D(0, ζ ) + Dres(p, ζ ),

holds, where Dres(p, ζ ) = O(p2) as p → 0 uniformly in ζ ∈ R
0
+.
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ii) The right-hand derivative of D(0, ·) at ζ = 0 exists and the following
decomposition

D(0, ζ ) = D(0, 0) + 2
√

2π2v2(0)l
− 3

2
1 (detW )−

1
2 ζ + Dres(ζ ), ζ ∈ R

0
+,

holds, where Dres(ζ ) = O(ζ 1+θ ) as ζ → 0.

Remark 3.6. An analogue of Lemma 3.5 has been proven in Ref. 5 in the case
where the functions u(·), v(·) and w(·, ·) are analytic on T

3 and (T3)2, respec-
tively.

Proof. i) Since m(·) ∈ C (3)(Uδ(0)) by definition of the function D(·, ·) and As-
sumptions 2.1 and 2.3 we obtain that the function D(·, ζ ) is of class C (2)(Uδ(0))
for any ζ ∈ C+.

Using

w0(p, q) = l1

2
(Wq, q) + o(|p||q|2) + o(|q|2) as |p|, |q| → 0

we obtain that there exists C > 0 such that for any ζ ∈ R
0
+ and i, j = 1, 2, 3 the

inequalities
∣∣∣ ∂2

∂pi∂p j

v2(q + q0(p))

w0(p, q) + ζ 2

∣∣∣ ≤ C

q2
, p, q ∈ Uδ(0) (3.3)

and
∣∣∣ ∂2

∂pi∂p j

v2(q + q0(p))

w0(p, q) + ζ 2

∣∣∣ ≤ C, p ∈ Uδ(0), q ∈ T
3 \ Uδ(0) (3.4)

hold.
Lebesgue’s dominated convergence theorem implies that

∂2

∂pi∂p j
D(p, 0) = lim

ζ→0+
∂2

∂pi∂p j
D(p, ζ ).

Repeated application of the Hadamard lemma (see Ref. 45, v. 1, p. 512)
enables us to write

D(p, ζ ) = D(0, ζ ) +
3∑

i=1

∂

∂pi
D(0, ζ )pi +

3∑
i, j=1

Hi j (p, ζ )pi p j ,

where for any ζ ∈ R
0
+ the functions Hi j (·, ζ ), i, j = 1, 2, 3, are continuous in

Uδ(0) and

Hi j (p, ζ ) = 1

2

∫ 1

0

∫ 1

0

∂2

∂pi∂p j
D(x1x2 p, ζ )dx1dx2.
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The estimates (3.3) and (3.4) give

|Hi, j (p, ζ )| ≤ 1

2

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂pi∂p j
D(x1x2 p, ζ )

∣∣∣∣ dx1dx2

≤ C

⎛
⎜⎝1 +

∫

Uδ (0)

v2(q + q0(p))dq

q2

⎞
⎟⎠

for any p ∈ Uδ(0) uniformly in ζ ∈ R
0
+.

Since for any ζ ∈ C+ the function D(·, ζ ) is even in Uδ(0) we have
[

∂

∂pi
D(p, ζ )

]
p=0

= 0, i = 1, 2, 3.

ii) Now we prove that the right-hand derivative of D(0, ·) at ζ = 0 exists and
the following inequalities

|D(0, ζ ) − D(0, 0)| ≤ Cζ, ζ ∈ R
0
+, (3.5)∣∣∣∣ ∂

∂ζ
D(0, ζ ) − ∂

∂ζ
D(0, 0)

∣∣∣∣ < Cζ θ , ζ ∈ R
0
+ (3.6)

hold for some positive C.

Indeed, the function D(0, ·) can be represented as

D(0, ζ ) = D1(ζ ) + D2(ζ )

with

D1(ζ ) = −1

2

∫

Uδ (0)

v2(q)

w0(0, q) + ζ 2
dq, ζ ∈ C+

and

D2(ζ ) = u(0) − m + ζ 2 − 1

2

∫

T
3\Uδ(0)

v2(q)

w0(0, q) + ζ 2
dq, ζ ∈ C+.

Since the function w0(0, ·) is continuous on the compact set T
3 \ Uδ(0) and

has a unique minimum at q = 0 there exists M1 > 0 such that |w0(0, q)| > M1

for all q ∈ T
3 \ Uδ(0).

Then by v(·) ∈ B(θ, T
3) we have

|D2(ζ ) − D2(0)| ≤ Cζ 2, ζ ∈ R
0
+ (3.7)

for some C = C(δ) > 0.
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Applying the Morse lemma and computing some integrals we obtain that
(see Lemma A.4 there exists a right-hand derivative of D1(·) at ζ = 0 and

∂

∂ζ
D1(0) = lim

ζ→0+
D1(ζ ) − D1(0)

ζ
= 2

√
2π2l

− 3
2

1 v2(0)(detW )−
1
2

and hence ∣∣D1(ζ ) − D1(0)
∣∣ < Cζ, ζ ∈ R

0
+ (3.8)

holds for some positive C.

Then from (3.7) and (3.8) it follows that the right-hand derivative of D(0, ·)
at ζ = 0 exists and

∂

∂ζ
D(0, 0) = 2

√
2π2l

− 3
2

1 v2(0)(detW )−
1
2 .

Comparing (3.7) and (3.8) we obtain (3.5).
In the same way one can prove the inequality (3.6). �

Corollary 3.7. Let the operator h(0) have an m energy resonance. Then for any
p ∈ Uδ(0), δ > 0 sufficiently small, and z ≤ m(p) the following decomposition

�(p, z) = 2
√

2π2v2(0)l
− 3

2
1 (detW )−

1
2

√
m(p) − z

+�(02)(m(p) − z) + �(20)(p, z)

holds, where �(02)(m(p) − z) (resp. �(20)(p, z)) is a function behaving like
O((m(p) − z)

1+θ
2 ) (resp. O(|p|2)) as |m(p) − z| → 0 (resp. p → 0 uniformly in

z ≤ m(p)).

Proof. By Lemma 3.2 we have that �(0, m) = 0 and v(0) �= 0 and hence the
proof of Corollary 3.7 immediately follows from Lemma 3.5 and the equality
�(p, z) = D(p,

√
m(p) − z), z ≤ m(p). �

Lemma 3.8. Let the operator h(0) have an m energy resonance. Then there exist
positive numbers c, C and δ such that

c|p| ≤ �(p, m) ≤ C |p| for any p ∈ Uδ(0) (3.9)

and

�(p, m) ≥ c for any p ∈ T
3 \ Uδ(0). (3.10)

Proof. Corollary 3.7 and the asymptotics (see part (ii) of Lemma A.2)

m(p) = m + l2
1 − l2

2

2l1
(W p, p) + o(p3) as p → 0 (3.11)

yields (3.9) for some positive numbers c, C .
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The inequality (3.10) follows from the positivity (see proof of Lemma A.3)
and continuity of the function �(·, m) on the compact set T

3 \ Uδ(0). �

4. THE ESSENTIAL SPECTRUM OF THE OPERATOR H

4.1. The Spectrum of the Operator Ĥ

We consider the operator Ĥ acting in Ĥ = L2(T3) ⊕ L2((T3)2) as

Ĥ

(
f1(p)

f2(p, q)

)
=

⎛
⎝ u(p) f1(p) + 1√

2

∫
T

3

v(q ′) f2(p, q ′) dq ′

1√
2
v(q) f1(p) + wp(q) f2(p, q)

⎞
⎠ .

The operator Ĥ commutes with any multiplication operator Uϒ by the bounded
function ϒ on T

3

Uϒ

(
f1(p)

f2(p, q)

)
= ϒ(p)

(
f1(p)

f2(p, q)

)
,

(
f1

f2

)
∈ Ĥ.

Therefore the decomposition of the space Ĥ into the direct integral

Ĥ =
∫

T
3

⊕H(2)dp

yield the decomposition into the direct integral

Ĥ =
∫

T
3

⊕h(p) dp, (4.1)

where the fiber operators h(p), p ∈ T
3, are defined by (2.2).

Lemma 4.1. For the spectrum σ (Ĥ ) of Ĥ the equality

σ (Ĥ ) ≡ ∪p∈T
3σd (h(p)) ∪ [m, M]

holds.

Proof. The assertion of the lemma follows from the representation (4.1) of the
operator Ĥ and the theorem on decomposable operators (see Ref. 35). �

Lemma 4.2. The essential spectrum σess(H ) of the operator H coincides with
the spectrum of Ĥ , that is,

σess(H ) = σ (Ĥ ). (4.2)
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Proof. Let σ be the set of complex numbers z ∈ C such that the equality
�(p, z) = 0 holds for some p ∈ T

3. In Ref. 26 it has been proved that the essential
spectrum σess(H ) of the operator H coincides with σ ∪ [m, M]. By Lemma 3.1
we have that

σ = ∪p∈T
3σd (h(p))

and hence by Lemma 4.1 we obtain (4.2). �

5. THE BIRMAN-SCHWINGER PRINCIPLE

For a bounded self-adjoint operator A, we define n(λ, A) as

n(λ, A) = sup{dim F : (Au, u) > λ, u ∈ F, ||u|| = 1}.
The number n(λ, A) is equal to the infinity if λ is in the essential spectrum of A
and if n(λ, A) is finite, it is equal to the number of the eigenvalues of A bigger
than λ. By the definition of N (z) we have

N (z) = n(−z,−H ), −z > −τess(H ).

Since the function �(·, ·) is positive on T
3 × (−∞, τess(H )) the positive

square root of �(p, z) exists for any p ∈ T
3 and z < τess(H ).

In our analysis of the spectrum of H the crucial role is played by the compact
operator T (z), z < τess(H ) in the space H(2) with the entries

(T00(z) f0)0 = (1 − u0 − z) f0, (T01(z) f1)0 = −
∫

T
3

v(q ′) f (q ′)dq ′√
�(q ′, z)

,

T10(z) = T ∗
01(z), (T11(z) f1)1(p) = v(p)

2
√

�(p, z)

∫

T
3

v(q ′) f (q ′)dq ′√
�(q ′, z)(w(p, q ′) − z)

.

The following lemma is a realization of the well known Birman-Schwinger
principle for the operator H (see Ref. 5, 37, 39).

Lemma 5.1. For z < τess(H ) the operator T (z) is compact and continuous in z
and

N (z) = n(1, T (z)). (5.1)

Proof. The operator H can be decomposed as

H =
⎛
⎝ H00 0 0

0 H11 0
0 0 H22

⎞
⎠ +

⎛
⎝ 0 H01 0

H10 0 H12

0 H21 0

⎞
⎠ .
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Denote by Ii , i = 0, 1, 2, the identity operator on the Hilbert space Hi , i =
0, 1, 2, and by I = diag {I0, I1} resp. I = diag {I0, I1, I2} the identity operator
on H(2) resp. H(3).

For any z < τess(H ) the operator Hii − z Ii , i = 1, 2, is positive and invert-

ible and hence the square root R
1
2
i (z) of the resolvent Ri (z) = (Hii − z Ii )−1 of

Hii , i = 1, 2, exists.
Let M(z), z < τess(H ) be the operator with entries

M00(z) = (1 + z)I0 − H00, M01(z) = −H01 R
1
2
1 (z),

M12(z) = −R
1
2
1 (z)H12 R

1
2
2 (z), M10(z) = M∗

01(z), M21(z) = M∗
12(z),

otherwise

Mαβ(z) = 0, α, β = 0, 1, 2.

One has ((H − zI) f, f ) < 0, f ∈ H if and only if ((M(z) − I)g, g) > 0, g =
(g0, g1, g2), where g0 = f0, gi = (Hii − z Ii )

1
2 fi , i = 1, 2.

It follows that

N (z) = n(1, M(z)). (5.2)

Let V (z), z < τess(H ) be the operator in H(2) with the entries

V11(z) = M12(z)M21(z), otherwise Vαβ(z) = Mαβ(z), α, β = 0, 1.

Denote by F = F0 ⊕ F1 ⊂ H0 ⊕ H1 ≡ H(2) a subspace for which the equality

dim F = n(1, V (z))

holds. Then

(M(z)g, g) = (V (z) f, f ) for all f = ( f0, f1) ∈ F

and g = ( f0, f1, M21(z) f1).

Moreover

((M(z) − I)g, g) = ((V (z) − I) f, f ) − || f ⊥
2 ||

for all f = ( f0, f1) ∈ F and g = ( f0, f1, M21(z) f1 + f ⊥
2 ), f ⊥

2 ⊥M21(z) f1.

Therefore

n(1, M(z)) = n(1, V (z)). (5.3)

One has ((V (z) − I)ϕ, ϕ) > 0, ϕ = (ϕ0, ϕ1) ∈ H(2) if and only if the
inequality

(ψ0, ψ0)0 + ((H11 − z I1)ψ1, ψ1)1 < (M00(z)ψ0, ψ0)0

− (H01ψ1, ψ0)0 − (H10(z)ψ0, ψ1)1 + (H12 R2(z)H21ψ1, ψ1)1 (5.4)
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holds for ψ0 = ϕ0, ψ1 = R
1
2
1 (z)ϕ1. This means that

n(1, V (z)) = n(−z, G(z)), (5.5)

where

G(z) =
(−H00 −H01

−H10 H12 R2(z)H21 − H11

)
.

Now we represent the operator H21 as a sum of two operators H (1)
21 and H (2)

21
acting from L2(T3) to L2((T3)2) as

(
H (1)

21 f1
)
(p, q) = 1

2
v(p) f1(q),

(
H (2)

21 f1
)
(p, q) = 1

2
v(q) f1(p).

The operator D(z) = H11 − z − H12 R2(z)H (2)
21 , z < τess(H ) is the multipli-

cation operator by the positive function �(·, z) defined on T
3 by (2.3) and hence

it is invertible. It is clear, that the positive square root D− 1
2 (z) of D−1(z) is the

multiplication operator by the function �− 1
2 (·, z).

Thus we can conclude that (G(z)ϕ, ϕ) > −z(ϕ, ϕ) holds if and only if
(T (z)η, η) > (η, η) holds for η0 = ϕ0, η1 = D− 1

2 (z)ϕ1 and hence

n(−z, G(z)) = n(1, T (z)). (5.6)

The equalities (5.2), (5.3), (5.5) and (5.6) give (5.1).
Finally we note that the operator T (z), z < τess(H ) is compact and continu-

ous in z. �

6. THE FINITENESS OF THE NUMBER OF EIGENVALUES
OF THE OPERATOR H

We starts the proof of the finiteness of the number of eigenvalues lying below
τess(H ) ( part (i) of Theorem 2.14) with the following two lemmas.

Lemma 6.1. Let Assumption 2.1 be fulfilled. Then there exist numbers
C1, C2, C3 > 0 and δ > 0 such that the following inequalities hold

(i) C1(|p|2 + |q|2) ≤ w(p, q) − m ≤ C2(|p|2 + |q|2) for all p, q ∈ Uδ(0),
(ii) w(p, q) − m ≥ C3 for all (p, q) /∈ Uδ(0) × Uδ(0).

Proof. By Assumption 2.1 the point (0, 0) ∈ (T3)2 is the unique non-
degenerated minimum point of the function w(·, ·). Then by (7.1) there exist pos-
itive numbers C1, C2, C3 and a δ−neighborhood of p = 0 ∈ T

3 so that (i) and (ii)
hold true. �
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Lemma 6.2. Let the conditions in part (i) of Theorem 2.14 be fulfilled. Then for
any z ≤ m the operator T (z) is compact and continuous from the left up to z = m.

Proof. Denote by Q(p, q; z) the kernel of the operator T11(z), z < m, that is,

Q(p, q; z) = v(p)v(q)

2
√

�(p, z)(w(p, q) − z)
√

�(q, z)
.

Since the function v ∈ C (2)(T3) is even and v(0) = 0 we have |v(p)| ≤ C |p| for
some C > 0 and for any p ∈ T

3. By virtue of Lemmas 3.4 and 6.1 the kernel
Q(p, q; z) is estimated by

C

(
χδ(p)

|p| + 1

) ( |p||q|χδ(p)χδ(q)

p2 + q2
+ 1

) (
χδ(q)

|q| + 1

)
,

where χδ(p) is the characteristic function of Uδ(0).
The latter function is square-integrable on (T3)2 and hence for any z ≤ m the

operator T11(z) is Hilbert-Schmidt.
The kernel function of T11(z), z < m is continuous in p, q ∈ T

3. There-
fore the continuity of the operator T11(z) from the left up to z = m follows from
Lebesgue’s dominated convergence theorem.

Since for all z ≤ m the operators T00(z), T01(z) and T10(z) are of rank 1 and
continuous from the left up to z = m one concludes that T (z) is compact and
continuous from the left up to z = m. �

We are now ready for the
Proof of (i) of Theorem 2.14. Let the conditions in part (i) of Theorem 2.14

be fulfilled. By Lemma 5.1 we have

N (z) = n(1, T (z)), as z < m

and by Lemma 6.2 for any γ ∈ [0, 1) the number n(1 − γ, T (m)) is finite. Then
we have

n(1, T (z)) ≤ n(1 − γ, T (m)) + n(γ, T (z) − T (m))

for all z < m and γ ∈ (0, 1). This relation can easily be obtained by using of
Weyl’s inequality

n(λ1 + λ2, A1 + A2) ≤ n(λ1, A1) + n(λ2, A2)

for the sum of compact operators A1 and A2 and for any positive numbers λ1 and
λ2.

Since T (z) is continuous from the left up to z = m, we obtain

lim
z→m−0

N (z) = N (m) ≤ n(1 − γ, T (m)) for all γ ∈ (0, 1).
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Thus

N (m) ≤ n(1 − γ, T (m)) < ∞. (6.1)

The inequality (6.1) proves the assertion (i) of Theorem 2.14.

7. ASYMPTOTICS FOR THE NUMBER OF EIGENVALUES
OF THE OPERATOR H

In this section we shall derive the asymptotics (2.5) for the number of eigen-
values of H , that is, we prove part (ii) of Theorem 2.14.

By Assumption 2.1 we get

w(p, q) = m + 1

2
(l1(W p, p) + 2l2(W p, q) + l1(Wq, q))

+ O(|p|3+θ + |q|3+θ ) as p, q → 0. (7.1)

By the representation (3.11) and Corollary 3.7 we get

�(p, z) = 4π2v2(0)

l3/2
1 (det W )

1
2

[l(W p, p) − 2(z − m)]
1
2 + O((|p|2 + |z − m|) 1+θ

2 )

(7.2)
as p → 0, |z − m| → 0, where l = (l2

1 − l2
2)/l1.

Denote by χ̂δ(·) the characteristic function of Ûδ(0) = {p ∈ T
3 : |W 1

2 p|
< δ}.

Let T (δ; |z − m|) be the operator in H(2) defined by

T (δ; |z − m|) =
(

0 0
0 T11(δ; |z − m|)

)
,

where T11(δ; |z − m|) is the integral operator in H1 with the kernel

l
3
2
1 (det W )

1
2 χ̂δ(p)χ̂δ(q)(l(Wq, q) + 2|z − m|)−1/4

2π2(l(W p, p) + 2|z − m|)1/4(l1(W p, p) + 2l2(W p, q) + l1(Wq, q) + 2|z − m|) .

Lemma 7.1. Let the conditions in part (ii) of Theorem 2.14 be fulfilled. Then
the operator T (δ; |z − m|) resp. T (z) − T (δ; |z − m|) is compact and continuous
in z < m resp. in z ≤ m.

Proof. The kernel of T (δ; |z − m|), z < m is square-integrable and continuous
in p, q ∈ T

3 and hence the operator T (δ; |z − m|) is compact and continuous in
z < m.
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Applying the asymptotics (7.1), (7.2) and Lemmas 3.8 and 6.1 one can esti-
mate the kernel of the operator T11(z) − T11(δ; |z − m|) by

C

(
|p|1+θ + |q|1+θ

|p| 1
2 (p2 + q2)|q| 1

2

+ |m − z| θ
2 (p2 + q2)−1

(|p|2 + |m − z|) 1
4 (|q|2 + |m − z|) 1

4

+ 1

)

and hence the operator T11(z) − T11(δ; |z − m|) belongs to the Hilbert-Schmidt
class for all z ≤ m. In combination with the continuity of the kernel of the opera-
tor in z < m this gives the continuity of T11(z) − T11(δ; |z − m|) in z ≤ m.

It is easy to see that T00(z), T01(z) and T10(z) are rank 1 operators and they
are continuous from the left up to z = m. Consequently T (z) − T (δ; |z − m|) is
compact and continuous in z ≤ m. �

Let

Sr : L2((0, r), σ0) → L2((0, r), σ0), r > 0,

σ0 = L2(S2), S
2 being the unit sphere in R

3,

be the integral operator with the kernel

S(t ; y) = (2π )−2 l12

cosh y + s12t
, (7.3)

y = x − x ′, x, x ′ ∈ (0, r), t =< ξ, η >, ξ, η ∈ S
2,

l12 = (
l2
1/

(
l2
1 − l2

2

)) 1
2 , s12 = l2/l1,

and let

Ŝ(λ) : σ0 → σ0, λ ∈ (−∞,+∞),

be the integral operator with the kernel

Ŝλ(t) =
+∞∫

−∞
exp {−iλr}S(t ; r ) dr = (2π )−1l12

sinh[λ(arc cos s12t)](
1 − s2

12t2
) 1

2 sinh(πλ)
.

For µ > 0, define

U (µ) = (4π )−1

+∞∫

−∞
n(µ, Ŝ(y))dy.

Lemma 7.2. The function U (µ) is continuous in µ > 0, the following limit

lim
r→∞

1

2
r−1n(µ, Sr) = U (µ)

exists and U (1) > 0.
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Remark 7.3. This lemma can be proven quite similarly to the corresponding
results of Ref. 37. In particular, the continuity of U (µ) in µ > 0 is a result of
Lemma 3.2, Theorem 4.5 states the existence of the limit

lim
r→∞

1

2
r−1n(µ, Sr) = U (µ)

and the inequality U (1) > 0 follows from Lemma 3.2.

Part (ii) of Theorem 2.14 will be deduced by a perturbation argument based
on Lemma 4.7, which has been proven in Ref. 37. For completenees, we here
reproduce the lemma.

Lemma 7.4. Let A(z) = A0(z) + A1(z), where A0(z) (resp.A1(z)) is com-
pact and continuous in z < m (resp.z ≤ m). Assume that for some function
f (·), f (z) → 0, z → m − 0 one has

lim
z→m−0

f (z)n(λ, A0(z)) = l(λ),

and l(λ) is continuous in λ > 0. Then the same limit exists for A(z) and

lim
z→m−0

f (z)n(λ, A(z)) = l(λ).

Remark 7.5. Since U(·) is continuous in µ > 0, according to Lemma 7.4 any
perturbations of the operator A0(z) defined in Lemma 7.4, which is compact and
continuous up to z = m do not contribute to the asymptotics (2.5). Throughout the
proof of the following theorem we shall use this fact without further comments.

Theorem 7.6. Let the conditions in part (ii) of Theorem 2.14 be fulfilled. Then
the equality

lim
|z−m|→0

| log |z − m||−1n(µ, T (δ; |z − m|)) = U (µ), µ > 0,

holds.

Proof. The space of functions having support in Ûδ(0) is an invariant subspace
for the operator T11(δ; |z − m|).

Let T̂ (0)
11 (δ; |z − m|) be the restriction of the operator T11(δ; |z − m|) to the

subspace L2(Ûδ(0)). By the unitary dilation

Y : L2(Uδ(0)) → L2(Ûδ(0)), (Y f )(p) = f (W − 1
2 p),
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where W is defined in Assumption 2.1, one verifies that the operator T̂ (0)
11 (δ; |z −

m|) is unitary equivalent to the following operator T (0)
11 (δ; |z − m|) acting in

L2(Ûδ(0)) as
(
T (0)

11 (δ; |z − m|) f
)
(p)

= l3/2
1

2π2

∫

Uδ(0)

(lp2 + 2|z − m|)−1/4(lq2 + 2|z − m|)−1/4

l1 p2 + 2l2(p, q) + l1q2 + 2|z − m| f (q) dq.

The operator T (0)
11 (δ; |z − m|) is unitary equivalent to the integral operator

T (1)
11 (δ; |z − m|) : L2(Ur (0)) → L2(Ur (0))

with the kernel

l3/2
1

2π2

(lp2 + 2)−1/4(lq2 + 2)−1/4

l1 p2 + 2l2(p, q) + l1q2 + 2
,

where r = |z − m|− 1
2 and Ur (0) = {p ∈ R

3 : |p| < r}.
The equivalence of the operators T (0)

11 (δ; |z − m|) and T (1)
11 (δ; |z − m|) is per-

formed by the unitary dilation

Br : L2(Uδ(0)) → L2(Ur (0)), (Br f )(p) =
(r

δ

)−3/2
f

(
δ

r
p

)
.

Let χ1(·) be characteristic function of the ball U1(0). We may replace the functions

(lp2 + 2)−1/4, (lq2 + 2)−1/4 and l1 p2 + 2l2(p, q) + l1q2 + 2

by

(lp2)−1/4(1 − χ1(p)), (lq2)−1/4(1 − χ1(q)) and l1 p2 + 2l2(p, q) + l1q2,

respectively, since the error will be a Hilbert-Schmidt operator continuous up to
z = m. Then we get the integral operator T (2)

11 (r ) on L2(Ur (0) \ U1(0)) with the
kernel

l−
1
2

l3/2
1

2π2

|p|−1/2|q|−1/2

l1 p2 + 2l2(p, q) + l1q2
.

By the dilation

M : L2(Ur (0) \ U1(0)) −→ L2((0, r) × σ0), r = 1/2| log |z − m|,
where (M f )(x, w) = e3x/2 f (exw), x ∈ (0, r), w ∈ S

2, one sees that the opera-
tor T (2)

11 (r ) is unitary equivalent with the integral operator Sr defined by (7.3).
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The difference of the operators Sr and T (δ; |z − m|) is compact (up to unitarily
equivalence) and hence we obtain

lim
|z−m|→0

| log |z − m||−1n(µ, T (δ; |z − m|)) = U (µ), µ > 0.

Theorem 7.6 is proved. �

Proof of part (ii) of Theorem 2.14. Let the conditions in part (ii) of
Theorem 2.14 be fulfilled. Then the equality

lim
|z−m|→0

| log |z − m||−1n(1, T (z)) = U (1) > 0 (7.4)

follows from Lemmas 7.1, 7.2, 7.4, and Theorem 7.6. Taking into account
the equality (7.4) and using Lemma 5.1 we complete the proof of part (ii) of
Theorem 2.14.

APPENDIX A

Lemma A.1. Let the function v as in Assumption 2.3 and the function w be
defined by (2.1) and ε be a real-analytic conditionally negative definite function
on T

3 with a unique non-degenerate minimum at the origin. Then Assumption 2.6
is fulfilled.

Proof. It is known that the real-valued (even) conditionally negative definite
function ε admits the (Lévy-Khinchin) representation (see, e.g., Refs. 4 and 9)

ε(p) = ε(0) +
∑

s∈Zd\{0}
(cos(p, s) − 1)ε̂(s), p ∈ T

3, (A.1)

which is equivalent to the requirement that the Fourier coefficients ε̂(s) with s �= 0
are non-positive, that is,

ε̂(s) ≤ 0, s �= 0, (A.2)

and the series
∑

s∈Z3\{0} ε̂(s) converges absolutely.
Since w and v are even the function 
(·) is also even. Then using the equality

w0(t) − wp(t) + wp(−t)

2
=

∑
s∈Z3\{0}

ε̂(s)(1 + cos(t, s))(1 − cos(p, s))

we have


(0, m) − 
(p, m) = 1

2

∑
s∈Z3\{0}

(−ε̂(s))(1 − cos(p, s))

×
∫

T
3

(1 + cos(t, s))F(p, t)dt + B̃(p), (A.3)
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where

F(p, ·) = [wp(·) + w−p(·) − 2m]

(wp(·) − m)(w−p(·) − m)(w0(·) − m)
v2(·)

and

B̃(p) = 1

4

∫

T
3

[wp(t) − w−p(t)]2

(wp(t) − m)(w−p(t) − m)(w0(t) − m)
v2(t) dt.

Set

B(p, s) =
∫

T
3

(1 + cos(t, s))F(p, t)dt.

Let χδ(·) be the characteristic function of Uδ(0). Choose δ > 0 such that

mes{(T3 \ Uδ(0)) ∩ supp v} > 0.

Set Fδ(p, ·) = (1 − χδ(·))F(p, ·). Then for all p ∈ T
3 and a.e.

t ∈ (T3 \ Uδ(0)) ∩ supp v(·)
the function Fδ(·, ·) is strictly positive. Since the function u has a unique minimum
at (0, 0) and v ∈ B(θ, T

3) we have, for any p ∈ T
3, that Fδ(p, ·) belongs to the

Banach space L1(T3). Then for some (sufficiently large)R > 0 and (sufficiently
small) c1(δ) > 0 and for all |s| ≤ R, p ∈ T

3, we have the inequality

B(1)
δ (p, s) =

∫

T
3

(1 + cos(t, s))Fδ(p, t)dt > c1(δ) > 0.

The Riemann-Lebesgue lemma yields

B(1)
δ (p, s) =

∫

T
3

(1 + cos(t, s))Fδ(p, t) dt

→
∫

T
3

Fδ(p, t)dt > 0, p ∈ T
3 as s → ∞.

The continuity of the function
∫

T
3 Fδ(p, t)dt on the compact set T

3 yields that

all p ∈ T
3 and |s| > R the inequality B(1)

δ (p, s) ≥ c2(δ) holds.
Thus for c(δ) = min{c1(δ), c2(δ)} the inequality B(1)

δ (p, s) ≥ c holds for
all s ∈ Z

3, p ∈ T
3. So B(2)

δ (p, s) ≥ 0, s ∈ Z
3, p ∈ T

3 yields B(p, s) > c, s ∈
Z

3, p ∈ T
3. Taking into account the inequalities B̃(p) ≥ 0, p ∈ T

3, and ε̂(s) ≤
0, s ∈ Z

3 \ {0} (see (A.2)) from the representations (A.1) and (A.3) we have


(0, m) − 
(p, m ≥ c(ε(p) − ε(0)).



216 Albeverio, Lakaev, and Rasulov

This together with the assumptions on ε(·), completes the proof of
Lemma A.1. �

Lemma A.2. Let Assumption 2.1 be fulfilled. Then there exists a δ-
neighborhood Uδ(0) ⊂ T

3 of the point p = 0 and an odd function q0(·) ∈
C (2)(Uδ(0)) such that: (i) for any p∈Uδ(0) the point q0(p) is a unique non-
degenerate minimum of wp(·) and

q0(p) = − l2

l1
p + O(|p|2+θ ) as p → 0. (A.4)

(ii) the function m(p) = minq∈T3 w(p, q) = w(p, q0(p)) is even and its all the
second order partial derivatives are belong to B(θ, T

3). One has the asymptotics

m(p) = m + l2
1 − l2

2

2l1
(W p, p) + O(|p|3+θ ) as p → 0. (A.5)

Proof. (i) By the implicit function theorem there exist δ > 0 and a function
q0(·) ∈ C (2)(Uδ(0)) such that for any p∈Uδ(0) the point q0(p) is the unique non-
degenerate minimum point of wp(·) (see Lemma 3 in Ref. 22).

Since w(·, ·) is even with respect to (p, q) ∈ (T3)2 for all p ∈ T
3 we obtain

m(−p) = min
q∈T3

w−p(q) = min
q∈T3

wp(−q) = min
−q∈T3

wp(q) = min
q∈T3

wp(q) = m(p)

and hence

wp(q0(p)) = m(p) = m(−p) = w−p(q0(−p)), p ∈ Uδ(0), (A.6)

since wp(q0(p)) = minq∈T3 wp(q), p ∈ Uδ(0).
According to the fact that w(·, ·) is even we get w−p(q0(−p)) =

wp(−q0(−p)). Then from (A.6) we have

wp(q0(p)) = wp(−q0(−p)), p ∈ Uδ(0). (A.7)

Since for each p ∈ Uδ(0) the point q0(p) is the unique non-degenerate minimum
of the function wp(·) the equality (A.7) yields q0(−p) = −q0(p), p ∈ Uδ(0).

The asymptotics (A.4) follows from the fact that q0(·) is an odd function and
its coefficient − l2

l1
is calculated using the identity �w(p, q0(p)) ≡ 0, p ∈ Uδ(0).

(ii) By the asymptotics (7.1), (A.4) and the equality m(p) = wp(q0(p)) we
obtain the asymptotics (A.5). �

Lemma A.3. If the conditions of Theorem 2.14 are fulfilled, then the oper-
ator h(p), p ∈ T

3, has no eigenvalues lying below m. Therefore, τess(H ) =
inf σthree(H ) = inf σtwo(H ) = m.

Proof. It suffices to prove that inf σtwo(H ) = m. Let the conditions of
Lemma A.3 be fulfilled. Since the function �(0, ·) is decreasing on (−∞, m) and
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the function u(·) (resp. 
(·)) has a unique minimum (resp. maximum) at p = 0
for all z < m and p ∈ T

3 we have

�(p, z) = u(p) − z − 1

2

(p, z) > u(0) − m − 1

2

(0, m). (A.8)

If the operator h(0) has either a threshold energy resonance or a thresh-
old eigenvalue, then by Lemmas 3.2 and 3.3 we have �(0, m) = 0. Hence by
inequality (A.8) we conclude that �(p, z) > 0 for all p ∈ T

3 and z < m. By
Lemma 3.1 the operator h(p), p ∈ T

3, has no eigenvalues lying below m.Thus,
inf σtwo(H ) = m. �

Lemma A.4. The right-hand derivative of D1(·) at ζ = 0 exists and the follow-
ing equality holds

∂

∂ζ
D1(0) = 2

√
2π2l

− 3
2

1 v2(0)(detW )−
1
2 . (A.9)

Proof. Let us consider the following difference

D1(ζ ) − D1(0) = −ζ 2

2

∫

Uδ (0)

v2(q) dq

(w0(0, q) + ζ 2)w0(0, q)
. (A.10)

The function w0(0, ·) has a unique non-degenerate minimum at q = 0.

Therefore, by virtue of the Morse lemma (see Ref. 16) there exists a one-to-one
mapping q = ϕ(t) of a certain ball Wγ (0) of radius γ > 0 with the center at t = 0
to a neighborhood W̃ (0) of the point q = 0 such that:

w0(0, ϕ(t)) = t2 (A.11)

with ϕ(0) = 0 and for the Jacobian Jϕ(t) ∈ B(θ, Uδ(0)) of the mapping q = ϕ(t)
the equality

Jϕ(0) =
√

2l
− 3

2
1 (detW )−

1
2

holds, where B(θ, Uδ(0)) can be defined similarly to B(θ, T
3).

In the integral in (A.10) making a change of variable q = ϕ(t) and using the
equality (A.11) we obtain

D1(ζ ) − D1(0) = −ζ 2

2

∫

Wγ (0)

v2(ϕ(t))Jϕ(t)

t2(t2 + ζ 2)
dt. (A.12)

Going over in the integral in (A.12) to spherical coordinates t = rω, we
reduce it to the form

D1(ζ ) − D1(0) = −ζ 2

2

∫ γ

0

F(r )

r2 + ζ 2
dr,
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with

F(r ) =
∫

S2

v2(ϕ(rω))Jϕ(rω)dω,

where S
2 is the unit sphere in R

3 and dω is the element of the unit sphere in this
space.

Using v ∈ C (2)(T3), Jϕ ∈ B(θ, Uδ(0)) we see that

|F(r ) − F(0)| ≤ Cr θ . (A.13)

Applying the inequality (A.13) it easy to see that The function D1(ζ ) −
D1(0) can be rewritten in the form

lim
ζ→0+

D1(ζ ) − D1(0)

ζ
= 2

√
2πl

− 3
2

1 v2(0)(detW )−
1
2 .

Hence we have that there exists a right-hand derivative of D1(·) at ζ = 0 and
the equality (A.9) holds. �
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